4.7 Article

Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system

Journal

CHEMOSPHERE
Volume 245, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125611

Keywords

Lead-contaminated soils; Dicalcium phosphate; Eggshell powder; Pistachio shell biochar; Soil enzymatic activities; Biochemistry

Ask authors/readers for more resources

Lead-contaminated soils are becoming an ecological risk to the environment because of producing lowquality food which is directly causing critical health issues in humans and animals. We hypothesized that incorporation of dicalcium phosphate (DCP), eggshell powder (ESP) and biochar (BH) at diverse rates into a Pb-affected soil can proficiently immobilize Pb and decline its bioavailability to spinach (Spinacia oleracea L). A soil was artificially spiked with Pb concentration (at 600 mg kg(-1)) and further amended with DCP, ESP, and BH (as sole treatments at 2% and in concoctions at 1% each) for immobilization of Pb in the soil. The interlinked effects of applied treatments on Pb concentrations in shoots and roots, biomass, antioxidants, biochemistry, and nutrition of spinach were also investigated. Results depicted that the highest reduction in DTPA-extractable Pb and the concentrations of Pb in shoots and roots was achieved in DCPI%+BHI% treatment that was up to 58%, 66%, and 53%, respectively over control. Likewise, the DCP1%+BH1% treatment also showed the maximum shoot and root dry weight (DW), chlorophyll-a (Chia) and chlorophyll-b (Chl-b) contents and relative water content (RWC) in spinach up to 92%, 121%, 60%, 65%, and 30%, respectively, compared to control. Likewise, DCP1%+BH1% treatment noticeably improved antioxidant enzymes, biochemistry, and nutrition in the leaves. Moreover, the DCPI%+BH1% treatment depicted mostly enhanced activities of dehydrogenase, catalase, acid phosphatase, alkaline phosphatase, phosphomonoesterase, urease, protease and B-glucosidase in the post-harvested soil up to 118%, 345%, 55%, 92%, 288%, 107%, 53% and 252%, respectively over control. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available