4.7 Article

Genotypes of the aquatic plant Myriophyllum spicatum with different growth strategies show contrasting sensitivities to copper contamination

Journal

CHEMOSPHERE
Volume 245, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125552

Keywords

-

Funding

  1. EC2C0 program from the National Institute of Sciences of the Universe (CNRS/INSU)
  2. French Ministry of research and higher education
  3. French Laboratory of Excellence project TULIP [ANR-10-LABX-41:ANR-11-IDEX-0002-02]
  4. Investissement d'Avenir grant of the Agence Nationale de la Recherche (CEBA) [ANR-10-LABX-25-01]

Ask authors/readers for more resources

Genotypic variability has been considered for years as a key attribute in species adaptation to new environments. It has been extensively studied in a context of chemical resistance, but remains poorly studied in response to chemical exposure in a context of global change. As aquatic ecosystems are particularly affected by environmental changes, we aimed to study how genotypic variability could inflect the sensitivity of aquatic plants to chemicals. Seven genotypes of Myriophyllum spicatum were exposed to three copper concentrations at 0, 0.15 and 0.5 mg/L The sensitivity of the different genotypes was assessed through several endpoints such as relative growth rate (RGR) and morphological traits, as well as physiological markers, such as plant biomacromolecular composition. Our results showed that genotypes exhibited significant differences in their life-history traits in absence of chemical contamination. Some trait syndromes were observed, and three growth strategies were identified: (1) biomass production and main shoot elongation, (2) dry matter storage with denser whorls to promote resource conservation and (3) lateral shoot production. An up to eightfold difference in sensitivity for growthrelated endpoints was observed among genotypes. Differences in sensitivity were partly attributed to morphological life-history traits. Our results confirm that genotypic variability can significantly affect M. spicatum sensitivity to Cu, and may influence the outcomes of laboratory testing based on the study of one single genotype. We recommend including genotypic variation as an assessment factor in ecological risk assessment and to study this source of variability more in depth as a possible driver of ecosystem resilience. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available