4.7 Article

Contribution of bacterially-induced oxidation of Fe-silicates in iron-rich ore to laterite formation, Salobo IOCG mine, Brazil

Journal

CHEMICAL GEOLOGY
Volume 539, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.chemgeo.2020.119499

Keywords

Biooxidation; Laterite; Iron; Microbial fossils; A. Ferrooxidans; Salobo; Weathering

Funding

  1. Australian Research Council [LP140100804]
  2. Australian Research Council [LP140100804] Funding Source: Australian Research Council

Ask authors/readers for more resources

A diverse array of microorganisms, found within the uppermost lithosphere, can mediate the dissolution and precipitation of minerals and therefore contribute to the formation of laterites. The Salobo iron-oxide copper gold (IOCG) mine in Brazil is an ideal environment to examine the specific interaction between iron-oxidising bacteria and ferrous iron-bearing minerals during formation of a similar to 60 m thick laterite weathering profile. We identified bacteria using DNA extracted from samples in active weathering zones. Many of the identified species are capable of oxidising the ferrous iron and/or reduced sulphur that occurred in minerals associated with the unweathered rocks of the deposit. Fe-bearing phyllosilicates have been variably altered to clays along cleavage planes by bacterial iron oxidation. Accelerated weathering of fresh rocks in laboratory-scale leaching column experiments was conducted using an endemic Acidithiobacillus ferrooxidans ssp. previously cultured from the Salobo mine. There were strong similarities between field samples from the Salobo laterite zone, and experimental leachate chemistry, associated precipitates, and fossilised bacteria remnants, particularly with respect to ferric (oxyhydr)oxide formation. Groundwaters in the Salobo laterite zone have circumneutral pH, whereas some iron-oxidising bacteria thrive in, and locally create, more acidic conditions (similar to pH 3). The leaching experiments showed that bacterially-facilitated silicate weathering, and bornite (Cu5FeS4) oxidation, can consume acid generated by bacterial oxidation reactions, creating an effective equilibrium with ferric (oxyhydr)oxide precipitation. However, the current acid neutralisation capacity of the ferricrete horizon at the top of the laterite zone was minimal. While bacterial activity promoted mineral oxidation and decomposition within the thick laterite at the Salobo mine, related iron mobility is restricted to the micrometre scale by essentially instantaneous precipitation of ferric (oxyhydr)oxide that eventually transforms via inorganic dehydration to goethite and hematite. Similar processes to those described in this study have likely occurred during the formation of many other iron-rich laterites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available