4.6 Article

Development and confirmation of a simple procedure to measure solids distribution in fluidized beds using tracer particles

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 217, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2020.115501

Keywords

Coarse grained method; Traveling fluidized bed; Tracer particles; Solids volume fraction; Particle tracking; Computational fluid dynamics

Funding

  1. US Department of Energy's Fossil Energy Crosscutting Technology Research Program
  2. NETL Research and Innovation Center's Advanced Reaction Systems FWP [89243318CFE000003]

Ask authors/readers for more resources

The spatial distribution of solid particles is a key factor affecting the performance of fluidized bed reactors. Non-invasive techniques including radioactive particle tracking (RPT) and positron emission particle tracking (PEPT) are deployed to measure the solids distribution. Different methods to calibrate the particle tracking measurements have been developed to quantify mean solids concentration. In this paper, gas-solid flows in a traveling fluidized bed are simulated with CFD-DEM and the behavior of different particles, including bulk sand particles and tracer particles are investigated. The simulated hydrodynamics are compared with experimental measurements. Analyses are carried out to derive the mean solids concentration from the tracer particle data. Different calibration approaches are examined, and the simple calibration method is verified. It is shown that the mean solids concentration can be measured reliably using representative tracer particles. The experimental RPT data are then revisited with the new calibration method which yields more realistic results. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available