4.7 Article

A portable solution blow spinning device for minimally invasive surgery hemostasis

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 387, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.124052

Keywords

Solution blow spinning; Minimally invasive surgery; Portable device; Hemostasis; Laparoscopic

Funding

  1. National Natural Science Foundation of China [51973100, 51703102, 81802190]
  2. Postdoctoral Science Foundation of China [2019M652329]

Ask authors/readers for more resources

In situ fiber deposition technology has shown great excellence in visceral hemostasis. In recent years, minimally invasive surgery has been widely welcomed by patients because of its small trauma, light pain and rapid recovery. In the treatment of minimally invasive surgical wounds, fiber deposition has the advantages of fast, convenient, disassemble free and low toxicity. However, due to the conductive nature of the human body and narrow space in thoracic and abdominal cavity, the use of electrospinning technology to deposit fibers have high risk of short circuit and creepage. Such adverse effects, on the one hand, bring dangers to patients, and on the other hand, they will destroy equipment such as endoscopes. In this work, we used gas-blowing spinning instead of high-voltage electricity to guide fiber deposition, and completed liver hemostasis in a minimally invasive surgical environment. Pathological section analysis revealed that the surgery did not trigger an additional inflammatory response. It is worth mentioning that the gas blowing system used in this work can be a portable one. The high pressure gas source is changed from a conventional air pump to a commercially available compressed gas bottle (weight similar to 284 g, air pressure similar to 0.6 MPa). The gas source is greatly optimized and the volume is smaller. It is more convenient to carry, which makes the combination of hemostasis and other surgical items more convenient. This method is similar to the hemostatic membrane prepared by electrospinning technology, which can avoid the use of drainage tube, thus providing a cutting-edge form for minimally invasive surgery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available