4.7 Article

Compression failure in dense non-woven fiber networks

Journal

CELLULOSE
Volume 27, Issue 10, Pages 6065-6082

Publisher

SPRINGER
DOI: 10.1007/s10570-020-03153-2

Keywords

Inhomogeneous material; Finite elements; Compression strength; Micromechanics

Funding

  1. Royal Institute of Technology

Ask authors/readers for more resources

Investigating the compression properties of randomly ordered fiber networks experimentally is difficult which has resulted in ongoing disputes as to the mechanisms controlling the compression strength in such materials. In this work, we investigated compression properties of randomly oriented fiber networks with a special emphasis on cellulose products such as paperboard. We numerically reconstructed the conditions of the short span compression test widely used to quantify the compression strength of paperboard. We found that the phenomenological failure mode of such networks is elasto-plastic buckling. The x-shaped failure mode observed in physical experiments appears when test specimen restraints are included in the model. The most significant improvements to sheet strength can be obtained by improving the elastic properties while the strain to failure is increased most by an improvement of the plastic yield and hardening properties of individual fibers. Bond breaks were confirmed to have a smaller influence on the overall response. Fiber level microscopic buckling was investigated in depth, providing quantitative estimates of the fraction of mass likely to buckle at the microscopic level. The analysis indicated that only a low to moderate number of load carrying fibers can be expected to buckle. The inherent strength reserve in non-ordered fiber networks was investigated by introducing hinge mechanisms throughout the network, and the effect was shown to be small for a small to moderate number of hinges.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available