4.7 Article

Treatment of Alzheimer's disease with framework nucleic acids

Journal

CELL PROLIFERATION
Volume 53, Issue 4, Pages -

Publisher

WILEY
DOI: 10.1111/cpr.12787

Keywords

Alzheimer's disease; blood- brain barrier; framework nucleic acids; nanoparticle

Categories

Ask authors/readers for more resources

Objectives To provide a new research direction for nerve regeneration and strategy for Alzheimer's disease treatment, tetrahedral DNA nanostructures (TDNs)-novel tetrahedral framework nucleic acid molecule nanoparticles (tFNA) that can inhibit the apoptosis of nerve cells are employed in the experiment. Materials and methods To verify the successful preparation of TDNs, the morphology of TDNs was observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The expression of apoptosis-related genes and proteins was investigated by confocal microscope, flow cytometry, PCR and Western blot to detect the impact of TDNs on the Alzheimer's model. And finally, Morris water maze experiment was used to test behavioural changes and Nissl stain was detected to observe the morphology and quantity of neurons in the hippocampus. Immunofluorescence stain was used to observe the A beta stain, and TUNEL dyeing was utilized to observe neuronal apoptosis. Results In vitro and in vivo experiments confirm that TDNs, in a specific concentration range, have no toxic or side effects on nerve cells, can effectively inhibit apoptosis in an Alzheimer's disease cell model and effectively improve memory and learning ability in a rat model of Alzheimer's disease. Conclusions These findings suggest that TDNs may be a promising drug for the treatment of Alzheimer's disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available