4.8 Article

From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response

Journal

CELL
Volume 167, Issue 4, Pages 947-+

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2016.10.019

Keywords

-

Funding

  1. Swartz Foundation
  2. NIH [U01NS090449, DP1 NS082121, R24NS086601]
  3. Simons Foundation [325207]
  4. European Research Council [282027 ZFISHSLEEP]
  5. Marie Curie Fellowship [PIIF-GA-2012-328847]

Ask authors/readers for more resources

Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available