4.4 Article

The lncRNA GAS5 Inhibits the Osteogenic Differentiation and Calcification of Human Vascular Smooth Muscle Cells

Journal

CALCIFIED TISSUE INTERNATIONAL
Volume 107, Issue 1, Pages 86-95

Publisher

SPRINGER
DOI: 10.1007/s00223-020-00696-1

Keywords

Long noncoding RNA GAS5; miR-26-5p; PTEN; Vascular smooth muscle cells; Vascular calcification

Funding

  1. Young Scholar Support Program of China Medical University [QGZ2018053]
  2. Doctoral Start-up Foundation of Liaoning Province [2019-BS-286]
  3. 345 Talent Project in Shengjing Hospital of China Medical University

Ask authors/readers for more resources

Vascular calcification (VC), which is associated with high cardiovascular morbidity and mortality in patients with chronic kidney disease, is promoted by the osteoblastic differentiation of vascular smooth muscle cells (VSMCs). The present study explored the functional roles and molecular mechanisms of the long noncoding RNA growth arrest-specific transcript 5 (GAS5) in VC. Our results indicated that GAS5 was clearly downregulated in calcified human aortic vascular smooth muscle cells (HASMCs). Functionally, we found that overexpression of GAS5 significantly attenuated the osteogenic differentiation and calcification of HASMCs induced by high levels of phosphorus. Moreover, miR-26-5p was identified to potentially bind to GAS5, and phosphatase and tensin homolog (PTEN) was determined to be a direct target of miR-26b-5p in HASMCs. Mechanistically, enforced expression of miR-26-5p significantly attenuated PTEN protein expression in HASMCs. Rescue experiments demonstrated that cotransfection of HASMCs with miR-26-5p mimics reduced the inhibition of Lv-GAS5 on osteogenic differentiation and calcification. As a result, GAS5 was confirmed to be an miR-26b-5p sponge and to thereby increase the expression of PTEN in HASMCs. In ex vivo models, GAS5 was significantly downregulated and its expression inversely related to the expression of miR-26b-5 and positively associated with the expression of PTEN in calcified aortic rings induced by high levels of phosphorus. Together, these results suggest that the GAS5/miR-26-5p/PTEN axis could serve as a potential therapeutic target for VC in patients with chronic kidney disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available