4.6 Article

A study of subsidence hotspots by mapping vulnerability indices through innovatory 'ALPRIFT' using artificial intelligence at two levels

Journal

BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
Volume 79, Issue 8, Pages 3989-4003

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10064-020-01781-3

Keywords

ALPRIFT; Framework; Fuzzy logic (Sugeno; Mamdani and Larsen); GEP; Ground-truthing; InSAR; Learning in two levels; Proof-of-concept; Sentinel-1; Subsidence

Funding

  1. University of Tabriz

Ask authors/readers for more resources

Declining groundwater levels due to the absence of a planning system makes aquifers vulnerable to subsidence. This paper investigates possible hotspots in terms of Subsidence Vulnerability Indices (SVI) by applying the ALPRIFT framework, introduced recently by the authors by mirroring the procedure for the DRASTIC framework. ALPRIFT is suitable to cases, where data is sparse, and is the acronym of seven data layers to be presented in due course. It is a scoring technique, in which each data layer bears an aspect of land subsidence and is prescribed with rates to account for local variability, and with prescribed weights to account for relative significance of the data layer. The inherent subjectivity in prescribed weights is treated in this paper by learning their values from site-specific data by the strategy of using artificial intelligence to learn from multiple models (AIMM). The strategy has two levels: (i) at Level 1, three fuzzy models are used to learn weight values from the local data and from observed target data, and (ii) at Level 2, genetic expression algorithm (GEP) is used to learn further, in which the outputs of the models at Level 1 are reused as its inputs and observed data as its target values. The results show that (i) the Nash-Sutcliff Efficiency (NSE) coefficient for ALPRIFT with measured land subsidence values is approx. 0.21; (ii) NSE is improved to 0.88 by learning the weights at Level 1 using fuzzy logic, and (iii) NSE is further improved to 0.94 by further learning at Level 2 using GEP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available