4.7 Article

Enzymatic production of 4-O-methyl d-glucaric acid from hardwood xylan

Journal

BIOTECHNOLOGY FOR BIOFUELS
Volume 13, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13068-020-01691-2

Keywords

4-O-Methyl d-glucaric acid; GH115; AA7; Xylan; Hemicellulose; Biorefinery

Funding

  1. SYNBIOMICS-Functional genomics and technoeconomic models for advanced biopolymer synthesis
  2. Ontario Genomics
  3. Genome Quebec
  4. Genome BC [10405]

Ask authors/readers for more resources

BackgroundDicarboxylic acids offer several applications in detergent builder and biopolymer fields. One of these acids, 4-O-methyl d-glucaric acid, could potentially be produced from glucuronoxylans, which are a comparatively underused fraction of wood and agricultural biorefineries.ResultsAccordingly, an enzymatic pathway was developed that combines AxyAgu115A, a GH115 alpha-glucuronidase from Amphibacillus xylanus, and GOOX, an AA7 gluco-oligosaccharide oxidase from Sarocladium strictum, to produce this bio-based chemical from glucuronoxylan. AxyAgu115A was able to release almost all 4-O-methyl d-glucuronic acid from glucuronoxylan while a GOOX variant, GOOX-Y300A, could convert 4-O-methyl d-glucuronic acid to the corresponding glucaric acid at a yield of 62%. Both enzymes worked effectively at alkaline conditions that increase xylan solubility. Given the sensitivity of AxyAgu115A to hydrogen peroxide and optimal performance of GOOX-Y300A at substrate concentrations above 20 mM, the two-step enzyme pathway was demonstrated as a sequential, one-pot reaction. Additionally, the resulting xylan was easily recovered from the one-pot reaction, and it was enzymatically hydrolysable.ConclusionsThe pathway in this study requires only two enzymes while avoiding a supplementation of costly cofactors. This cell-free approach provides a new strategy to make use of the underutilized hemicellulose stream from wood and agricultural biorefineries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available