4.8 Article

Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification

Journal

BIORESOURCE TECHNOLOGY
Volume 304, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2020.122984

Keywords

Norfloxacin; Antibiotics wastewater; Microbial fuel cell; Antibiotic resistance genes; Electricity production

Funding

  1. Natural Science Foundation of China [31570504]
  2. Natural Science Foundation of Tianjin [16JCYBJC22900]
  3. Ministry of Education of China [IRT13024]

Ask authors/readers for more resources

Norfloxacin (NFLX) is a synthetic antibiotic widely used in the treatment of infectious diseases. In this work, the performance of microbial fuel cells (MFCs) toward NFLX degradation, electricity production and the antibiotics resistances genes (ARGs) generation was investigated. NFLX degradation efficiency and COD removal reached 65.5% and 94.5% respectively. The increase in NFLX concentration (128 mg/L) had no significant influence on NFLX degradation efficiency, COD removal and MFCs voltage output while the electricity was successfully generated. The quantitative polymerase chain reaction (qPCR) indicated low absolute abundances of ARGs (mdtk, mdtm, and pmra) compared with the traditional wastewater treatment plants (WWTPs). Anodic bacteria can survive in the presence of high NFLX concentration and sustain its degradation and electricity production. In terms of NFLX degradation, COD removal, diminished ARGs generation and simultaneous energy production, MFC seems to be a promising technology for antibiotics wastewater treatment with a potential to overcome the ARGs challenge.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available