4.6 Article

A deep stacked random vector functional link network autoencoder for diagnosis of brain abnormalities and breast cancer

Journal

BIOMEDICAL SIGNAL PROCESSING AND CONTROL
Volume 58, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.bspc.2020.101860

Keywords

Magnetic resonance imaging; Autoencoder; Random vector functional link network; Deep neural network; ReLU

Ask authors/readers for more resources

Automated diagnosis of two-class brain abnormalities through magnetic resonance imaging (MRI) has progressed significantly in past few years. In contrast, there exists a limited amount of methods proposed to date for multiclass brain abnormalities detection. Such detection has shown its importance in biomedical research and has remained a challenging task. Almost all existing methods are designed using conventional machine learning approaches, however, deep learning methods, due to their advantages over machine learning, have recently achieved great success in various computer vision and medical imaging applications. In this paper, a deep neural network termed as stacked random vector functional link (RVFL) based autoencoder (SRVFL-AE) is proposed to detect the multiclass brain abnormalities. The RVFL autoencoders are the basic building blocks of the proposed SRVFL-AE. The main purpose of choosing RVFL as the core component of the proposed SRVFL-AE is to improve the generalization capability and learning speed compared to traditional autoencoder based deep learning methods. Further, the rectified linear unit (ReLU) activation function is incorporated in the proposed deep network to provide fast and better hidden representation of input features. To evaluate the effectiveness of suggested method, two benchmark multiclass MR brain datasets such as MD-1 and MD-2 are considered. The scheme achieved a greater accuracy of 96.67% and 95.00% on MD-1 and MD-2 datasets respectively. The efficacy of the model is also tested over a standard breast cancer dataset. The results demonstrated that our deep network obtains better performance with least training time and compact network architecture compared to its counterparts. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available