4.5 Article

A viscoelastic two-dimensional network model of the lung extracellular matrix

Journal

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
Volume 19, Issue 6, Pages 2241-2253

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-020-01336-1

Keywords

Extracellular matrix; Lung; Viscoelastic properties; Network model

Funding

  1. Internal Faculty of Engineering Scholarships

Ask authors/readers for more resources

The extracellular matrix (ECM) comprises a large proportion of the lung parenchymal tissue and is an important contributor to the mechanical properties of the lung. The lung tissue is a biologically active scaffold with a complex ECM matrix structure and composition that provides physical support to the surrounding cells. Nearly all respiratory pathologies result in changes in the structure and composition of the ECM; however, the impact of these alterations on the mechanical properties of the tissue is not well understood. In this study, a novel network model was developed to incorporate the combinatorial effect of lung tissue ECM constituents such as collagen, elastin and proteoglycans (PGs) and used to mimic the experimentally derived length-tension response of the tissue to uniaxial loading. By modelling the effect of collagen elasticity as an exponential function with strain, and in concert with the linear elastic response of elastin, the network model's mechanical response matched experimental stress-strain curves from the literature. In addition, by incorporating spring-dashpot viscoelastic elements, to represent the PGs, the hysteresis response was also simulated. Finally, by selectively reducing volume fractions of the different ECM constituents, we were able to gain insight into their relative mechanical contribution to the larger scale tissue mechanical response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available