4.6 Review

Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects

Journal

BIODIVERSITY AND CONSERVATION
Volume 29, Issue 7, Pages 2089-2121

Publisher

SPRINGER
DOI: 10.1007/s10531-020-01980-0

Keywords

Biodiversity monitoring; Species detection; Conservation tools; High-throughput sequencing; Traditional surveys; Biological invasions

Funding

  1. Yunnan Oriented Fund for Postdoctoral Researchers

Ask authors/readers for more resources

Conserving biodiversity in the face of ever-increasing human pressure is hampered by our lack of basic information on species occurrence, distribution, abundance, habitat requirements, and threats. Obtaining this information requires efficient and sensitive methods capable of detecting and quantifying true occurrence and diversity, including rare, cryptic and elusive species. Environmental DNA (eDNA) is an emerging technique that can increase our ability to detect and quantify biodiversity, by overcoming some of the challenges of labor-intensive traditional surveys. The application of eDNA in ecology and conservation has grown enormously in recent years, but without a concurrent growth in appreciation of its strengths and limitations. In many situations, eDNA may either not work, or it may work but not provide the information needed. Problems with (1) imperfect detection, (2) abundance quantification, (3) taxonomic assignment, (4) eDNA spatial and temporal dynamics, (5) data analysis and interpretation, and (6) assessing ecological status have all been significant. The technique has often been used without a careful evaluation of the technical challenges and complexities involved, and a determination made that eDNA is the appropriate method for the species or environment of interest. It is therefore important to evaluate the scope and relevance of eDNA-based studies, and to identify critical considerations that need to be taken into account before using the approach. We review and synthesize eDNA studies published to date to highlight the opportunities and limitations of utilizing eDNA in ecology and conservation. We identify potential ways of reducing limitations in eDNA analysis, and demonstrate how eDNA and traditional surveys can complement each other.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available