4.6 Article

Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 113, Issue 5, Pages 944-952

Publisher

WILEY
DOI: 10.1002/bit.25860

Keywords

carboxylic acid reductase; reductive aldehyde synthesis; enzyme promiscuity; support vector machines

Funding

  1. Bill and Melinda Gates Foundation, NSF [CBET-0835800]
  2. Northwestern McCormick School of Engineering

Ask authors/readers for more resources

Chemicals with aldehyde moieties are useful in the synthesis of polymerization reagents, pharmaceuticals, pesticides, flavors, and fragrances because of their high reactivity. However, chemical synthesis of aldehydes from carboxylic acids has unfavorable thermodynamics and limited specificity. Enzymatically catalyzed reductive bioaldehyde synthesis is an attractive route that overcomes unfavorable thermodynamics by ATP hydrolysis in ambient, aqueous conditions. Carboxylic acid reductases (Cars) are particularly attractive, as only one enzyme is required. We sought to increase the knowledge base of permitted substrates for four Cars. Additionally, the Lys2 enzyme family was found to be mechanistically the same as Cars and two isozymes were also tested. Our results show that Cars prefer molecules where the carboxylic acid is the only polar/charged group. Using this data and other published data, we develop a support vector classifier (SVC) for predicting Car reactivity and make predictions on all carboxylic acid metabolites in iAF1260 and Model SEED. Biotechnol. Bioeng. 2016;113: 944-952. (c) 2015 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available