4.7 Article

Update to the MUSIG model in ANSYS CFX for reliable modelling of bubble coalescence and breakup

Journal

APPLIED MATHEMATICAL MODELLING
Volume 81, Issue -, Pages 506-521

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2020.01.033

Keywords

Bubble breakup; Bubble coalescence; Population balance equation; Sectional method; MUSIG model

Ask authors/readers for more resources

The MUSIG (Multiple Size Group) model in the commercial CFD code ANSYS CFX is a population balance approach for describing binary bubble coalescence and breakup events. It is widely used in the simulation of poly-dispersed bubbly flows. The purpose of this work is to identify the internal inconsistencies in the discrete method that is applied for the solution of the population balance equation in MUSIG, and to propose an internally consistent one for discretising the source and sink terms that result from bubble coalescence and breakup. The new formulation is superior to the existing ones in preserving both mass and number density of bubbles, allowing arbitrary discretisation schemes and is free of costly numerical integrations. The numerical results on the evolution of bubble size distributions in bubbly flows reveal that the inconsistency in the original MUSIG regarding bubble breakup is non-negligible for both academic and practical cases. The discussion on the effect of internal inconsistency as well as updates to the model presented in this work are necessary and important for calibration of bubble coalescence and breakup models using the MUSIG approach. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available