4.8 Article

Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 264, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2019.118522

Keywords

Dry reforming; Ni/ZrO2; Oxygen species; Metal doping; Carbon deposition

Funding

  1. National Natural Science Foundation of China [21303242]
  2. National Key Research and Development Program [2016YFF0102601]

Ask authors/readers for more resources

During dry reforming of methane, oxygen species over the catalyst surface play an important role in CH4/CO2 reactivity, catalytic performance and carbon deposition. Herein, the effects of the surface adsorbed oxygen species tuned by doping with different rare-metal metals (such as Ce, La, Sm and Y) on the catalytic behavior were elaborated systematically. It was found that Y-doped catalyst exhibited the most amount of surface adsorbed oxygen species, followed by Sm, La, Ce and non-doped catalysts. The results confirmed that the surface adsorbed oxygen species were remarkably beneficial to enhance both CO2 activation and CH4 dissociation. Nevertheless, carbon formation and removal did not keep pace at low temperature due to more promotional effects of the surface adsorbed oxygen species on CH4 dissociation than CO2 activation. The gap between carbon deposition and removal was potential to be ameliorated through the accelerated activation to CO2 at high temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available