4.7 Article

Complex Response of the CpxAR Two-Component System to β-Lactams on Antibiotic Resistance and Envelope Homeostasis in Enterobacteriaceae

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 64, Issue 6, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.00291-20

Keywords

Enterobacteriaceae; antibiotic resistance; cell envelope; stress response

Funding

  1. Innovative Medicines Initiative Joint Undertaking [115525]
  2. European Union
  3. EFPIA companies

Ask authors/readers for more resources

The Cpx stress response is widespread among Enterobacteriaceae. We previously reported a mutation in cpxA in a multidrug-resistant strain of Klebsiella aerogenes isolated from a patient treated with imipenem. This mutation yields a single-amino-acid substitution (Y144N) located in the periplasmic sensor domain of CpxA. In this work, we sought to characterize this mutation in Escherichia coli by using genetic and biochemical approaches. Here, we show that cpxA(Y144N) is an activated allele that confers resistance to beta-lactams and aminoglycosides in a CpxR-dependent manner, by regulating the expression of the OmpF porin and the AcrD efflux pump, respectively. We also demonstrate the effect of the intimate interconnection between the Cpx system and peptidoglycan integrity on the expression of an exogenous AmpC beta-lactamase by using imipenem as a cell wall-active antibiotic or by inactivating penicillin-binding proteins. Moreover, our data indicate that the Y144N substitution abrogates the interaction between CpxA and CpxP and increases phosphotransfer activity on CpxR. Because the addition of a strong AmpC inducer such as imipenem is known to cause abnormal accumulation of muropeptides (disaccharide-pentapeptide and N-acetylglucosamyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamymeso-diaminopimelic-acid-D-alanyl-D-alanine) in the periplasmic space, we propose these molecules activate the Cpx system by displacing CpxP from the sensor domain of CpxA. Altogether, these data could explain why large perturbations to peptidoglycans caused by imipenem lead to mutational activation of the Cpx system and bacterial adaptation through multidrug resistance. These results also validate the Cpx system, in particular, the interaction between CpxA and CpxP, as a promising therapeutic target.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available