4.7 Article

Exercise training prevents ventricular tachycardia in CPVT1 due to reduced CaMKII-dependent arrhythmogenic Ca2+ release

Journal

CARDIOVASCULAR RESEARCH
Volume 111, Issue 3, Pages 295-306

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvw095

Keywords

Arrhythmias; CPVT1; Exercise training; Ca2+ homeostasis; CaMKII

Funding

  1. Norwegian Health Association
  2. Anders Jahres Foundation for the Promotion of Science
  3. Research Council of Norway
  4. Rakel and Otto Bruuns Foundation
  5. Deutsche Forschungsgemeinschaft [SFB 1002, B05A09]
  6. National Institutes of Health [R01 HL079031, R01 HL070250, R01 HL096652, R01 HL113001]

Ask authors/readers for more resources

Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is caused by mutations in the cardiac ryanodine receptor (RyR2) that lead to disrupted Ca2+ handling in cardiomyocytes and ventricular tachycardia. The aim of this study was to test whether exercise training could reduce the propensity for arrhythmias in mice with the CPVT1-causative missense mutation Ryr2-R2474S by restoring normal Ca2+ handling. Ryr2-R2474S mice (RyR-RS) performed a 2 week interval treadmill exercise training protocol. Each exercise session comprised five 8 min intervals at 80-90% of the running speed at maximal oxygen uptake (VO2max) and 2 min active rest periods at 60%. VO2max increased by 10 +/- 2% in exercise trained RyR-RS (ET), while no changes were found in sedentary controls (SED). RyR-RS ET showed fewer episodes of ventricular tachycardia compared with RyR-RS SED, coinciding with fewer Ca2+ sparks and waves, less diastolic Ca2+ leak from the sarcoplasmic reticulum, and lower phosphorylation levels at RyR2 sites associated with Ca2+-calmodulin-dependent kinase type II (CaMKII) compared with RyR-RS SED. The CaMKII inhibitor autocamtide-2-related inhibitory peptide and also the antioxidant N-acetyl-l-cysteine reduced Ca2+ wave frequency in RyR-RS equally to exercise training. Protein analysis as well as functional data indicated a mechanism depending on reduced levels of oxidized CaMKII after exercise training. Two weeks of detraining reversed the beneficial effects of the interval treadmill exercise training protocol in RyR-RS ET. Long-term effects of interval treadmill exercise training reduce ventricular tachycardia episodes in mice with a CPVT1-causative Ryr2 mutation through lower CaMKII-dependent phosphorylation of RyR2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available