4.8 Article

Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography-Mass Spectrometry Based Untargeted Metabolomics

Journal

ANALYTICAL CHEMISTRY
Volume 92, Issue 12, Pages 8072-8080

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b05135

Keywords

-

Funding

  1. University of British Columbia Startup Grant [F18-03001]
  2. Canadian Foundation for Innovation [CFI 38159]

Ask authors/readers for more resources

Full-scan, data-dependent acquisition (DDA), and data-independent acquisition (DIA) are the three common data acquisition modes in high resolution mass spectrometry-based untargeted metabolomics. It is an important yet underrated research topic on which acquisition mode is more suitable for a given untargeted metabolomics application. In this work, we compared the three data acquisition techniques using a standard mixture of 134 endogenous metabolites and a human urine sample. Both hydrophilic interaction and reversed-phase liquid chromatographic separation along with positive and negative ionization modes were tested. Both the standard mixture and urine sample generated consistent results. Full-scan mode is able to capture the largest number of metabolic features, followed by DIA and DDA (53.7% and 64.8% respective features fewer on average in urine than full-scan). Comparing the MS2 spectra in DIA and DDA, spectra quality is higher in DDA with average dot product score 83.1% higher than DIA in Urine(H), and the number of MS2 spectra (spectra quantity) is larger in DIA (on average 97.8% more than DDA in urine). Moreover, a comparison of relative standard deviation distribution between modes shows consistency in the quantitative precision, with the exception of DDA showing a minor disadvantage (on average 19.8% and 26.8% fewer features in urine with RSD < 5% than full-scan and DIA). In terms of data preprocessing convenience, full-scan and DDA data can be processed by well-established software. In contrast, several bioinformatic issues remain to be addressed in processing DIA data and the development of more effective computational programs is highly demanded.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available