4.7 Article

Photothermal and colorimetric dual mode detection of nanomolar ferric ions in environmental sample based on in situ generation of prussian blue nanoparticles

Journal

ANALYTICA CHIMICA ACTA
Volume 1105, Issue -, Pages 197-207

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2020.01.049

Keywords

Au-Cu core-shell nanocubes; Prussian blue nanoparticles; Ferric ions; Photothermal; Colorimetric

Funding

  1. National Natural Science Foundation of China [21765013, 21665023, 21565021]
  2. Gansu Province Higher Education Research Project [2017A-115]

Ask authors/readers for more resources

Iron ions play a key role in many physiological processes, which can provide feedback for the evaluation of biological systems and environmental processes. New strategies for portable determination of Fe3+ therefore are still in urgent need. Here, through an in situ generation of prussian blue nanoparticles (PB NPs) in aqueous solution, we developed a bimodal method for photothermal and colorimetric detection of Fe3+. The sensing mechanism is based on the effective oxidation etching of Au-Cu core-shell nano-cubes induced by Fe3+, accompanied by the in situ generation of PB NPs. It can be attributed to the specific reaction between ferrous ions (Fe2+) from the reduction of Fe3+ and potassium ferricyanide (K-3[Fe(CN)(6)]) in the reaction solution. The in situ produced PB NPs show distinct bare-eye-detectable readouts with highly sensitive colorimetric and photothermal responses and thus can be used for Fe3+ determination. Such colorimetric change signals of characteristic absorbance at 740 nm in the UV-vis spectra showed a sensitive response to Fe3+ with a LOD of 210 nM. Moreover, as a sensitive photothermal probe, PB NPs generated in our Fe3+-enabled reaction system also exhibited a sensitive response to Fe3+ with a LOD of 70 nM. In addition, the standard addition experiments demonstrate our photothermal and colorimetric probe has good applicability for Fe3+ detection in the river water sample. What's more, the proposed strategy opens a new horizon for affordable detection of metal ions using a common thermometer, and therefore has a great potential for analytical chemistry and some important applications such as environmental monitoring, disease diagnostics and food analysis. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available