4.7 Article

Mutations in the Kinesin-2 Motor KIF3B Cause an Autosomal-Dominant Ciliopathy

Journal

AMERICAN JOURNAL OF HUMAN GENETICS
Volume 106, Issue 6, Pages 893-904

Publisher

CELL PRESS
DOI: 10.1016/j.ajhg.2020.04.005

Keywords

-

Funding

  1. US National Institutes of Health [HD042601, GM121317, DK072301, EY007142]
  2. Foundation Fighting Blindness USA
  3. William Stamps Farish Fund
  4. National Center for Research Resources [R24 RR016094]
  5. Office of Research Infrastructure Programs [OD R24OD010928]
  6. Phyllis and George Miller Feline Health Fund, Center for Companion Animal Health, School of Veterinary Medicine, University of California - Davis [2007-38-FM, 2008-08F]
  7. Winn Feline Foundation [MT07-012, W12-022]
  8. Cat Health Network [D12FE-509]
  9. University of Missouri, College of Veterinary Medicine Gilbreath McLorn Endowment
  10. Myers-Dunlap Endowment at Michigan State University
  11. National Eye Institute [R01EY012910, R01EY026904, P30EY014104]
  12. Foundation Fighting Blindness [EGI-GE-1218-0753-UCSD]

Ask authors/readers for more resources

Kinesin-2 enables ciliary assembly and maintenance as an anterograde intraflagellar transport (IFT) motor. Molecular motor activity is driven by a heterotrimeric complex comprised of KIF3A and KIF3B or KIF3C plus one non-motor subunit, KIFAP3. Using exome sequencing, we identified heterozygous KIF3B variants in two unrelated families with hallmark ciliopathy phenotypes. In the first family, the proband presents with hepatic fibrosis, retinitis pigmentosa, and postaxial polydactyly; he harbors a de novo c.748G>C (p.Glu250Gln) variant affecting the kinesin motor domain encoded by KIF3B. The second family is a six-generation pedigree affected predominantly by retinitis pigmentosa. Affected individuals carry a heterozygous c.1568T>C (p.Leu523Pro) KIF3B variant segregating in an autosomal-dominant pattern. We observed a significant increase in primary cilia length in vitro in the context of either of the two mutations while variant KIF3B proteins retained stability indistinguishable from wild type. Furthermore, we tested the effects of KIF3B mutant mRNA expression in the developing zebrafish retina. In the presence of either missense variant, rhodopsin was sequestered to the photoreceptor rod inner segment layer with a concomitant increase in photoreceptor cilia length. Notably, impaired rhodopsin trafficking is also characteristic of recessive KIF3B models as exemplified by an early-onset, autosomal-recessive, progressive retinal degeneration in Bengal cats; we identified a c.1000G>A (p.Ala334Thr) KIF3B variant by genome-wide association study and whole-genome sequencing. Together, our genetic, cell-based, and in vivo modeling data delineate an autosomal-dominant syndromic retinal ciliopathy in humans and suggest that multiple KIF3B pathomechanisms can impair kinesin-driven ciliary transport in the photoreceptor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available