4.6 Article

HOTAIR drives autophagy in midbrain dopaminergic neurons in the substantia nigra compacta in a mouse model of Parkinson's disease by elevating NPTX2 via miR-221-3p binding

Journal

AGING-US
Volume 12, Issue 9, Pages 7660-7678

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/aging.103028

Keywords

HOX transcript antisense intergenic RNA; microRNA-221-3p; neuronal pentraxin II; autophagy; Parkinson's disease

Ask authors/readers for more resources

Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive cell loss, largely confined to mesencephalic dopamine neurons of the substantia nigra. This study investigated the functional relevance of the HOX transcript antisense intergenic RNA (HOTAIR)/microRNA-221-3 (miR-221-3p)/neuronal pentraxin II (NPTX2) axis in the process of dopaminergic neuron autophagy using PD mouse models. The PD mouse models were established by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP), while PD cell model was constructed by pretreatment with 1-methyl-4-phenylpyridinium (MPP+). The expression of HOTAIR was then examined using RT-qPCR. In addition, the interactions between HOTAIR, miR-221-3p, and NPTX2 were detected through RIP and dual-luciferase reporter gene assays. CCK-8 assay was performed to measure cell viability, and the expression of autophagy-related genes was determined using Western blot analysis. HOTAIR was found to be significantly expressed in the substantia nigra compact tissues and MN9D cells following PD modeling. HOTAIR could bind to miR-221-3p and elevate the NPTX2 expression, which resulted in diminished cell viability and enhanced autophagy of dopaminergic neurons both in vitro and in vivo. In summary, down-regulation of HOTAIR could potentially inhibit the autophagy of dopaminergic neurons in the substantia nigra compacta in a mouse model of PD, thus saving the demise of dopaminergic neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available