4.5 Article

A Nitrogen-Rich Covalent Triazine Framework as a Photocatalyst for Hydrogen Production

Journal

ADVANCES IN POLYMER TECHNOLOGY
Volume 2020, Issue -, Pages -

Publisher

WILEY-HINDAWI
DOI: 10.1155/2020/7819049

Keywords

-

Funding

  1. National Key RD Plan [2016YFB0302400]
  2. Agricultural Key Applied Technology Innovation Project of Shandong Province (2017) [6]
  3. Shandong Provincial Double-Hundred Talent Plan on 100 Foreign Experts
  4. Energy Education Trust of New Zealand
  5. MacDiarmid Institute for Advanced Materials and Nanotechnology

Ask authors/readers for more resources

Covalent triazine frameworks (CTFs) have emerged as new candidate materials in various research areas such as catalysis, gas separation storage, and energy-related organic devices due to their easy functionalization, high thermal and chemical stability, and permanent porosity. Herein, we report the successful synthesis of a CTF rich in cyano groups (CTF-CN) by the solvothermal condensation of 2,3,6,7-tetrabromonapthalene (TBNDA), Na-2(1,1-dicyanoethene-2,2-dithiolate), and 1,3,5-tris-(4-aminophenyl)-triazine (TAPT) at 120 degrees C. XRD, SEM, and TEM characterization studies revealed CTF-CN to be amorphous and composed of ultrathin 2D sheets. CTF-CN possessed strong absorption at visible wavelengths, with UV-vis measurements suggesting a band gap energy in the range 2.7-2.9 eV. A 5 wt.% Pt/CTF-CN was found to be a promising photocatalyst for hydrogen production, affording a rate of 487.6 mu mol g(-1) h(-1) in a H2O/TEOA/CH3OH solution under visible light. The photocatalytic activity of CTF-CN was benchmarked against g-C3N4 for meaningful assessment of performance. Importantly, the 5 wt.% Pt/CTF-CN photocatalyst exhibited excellent thermal and photocatalytic stability. Further, as a nitrogen-rich porous 2D material, CTF-CN represents a potential platform for the development of novel electrode material for fuel cells and metal ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available