4.8 Article

Highly Efficient All-Small-Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing

Journal

ADVANCED MATERIALS
Volume 32, Issue 21, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201908373

Keywords

all-small-molecule organic solar cells; interpenetrating networks; side-chain engineering; small molecule donor materials; thermal annealing

Ask authors/readers for more resources

It is very important to fine-tune the nanoscale morphology of donor:acceptor blend active layers for improving the photovoltaic performance of all-small-molecule organic solar cells (SM-OSCs). In this work, two new small molecule donor materials are synthesized with different substituents on their thiophene conjugated side chains, including SM1-S with alkylthio and SM1-F with fluorine and alkyl substituents, and the previously reported donor molecule SM1 with an alkyl substituent, for investigating the effect of different conjugated side chains on the molecular aggregation and the photophysical, and photovoltaic properties of the donor molecules. As a result, an SM1-F-based SM-OSC with Y6 as the acceptor, and with thermal annealing (TA) at 120 degrees C for 10 min, demonstrates the highest power conversion efficiency value of 14.07%, which is one of the best values for SM-OSCs reported so far. Besides, these results also reveal that different side chains of the small molecules can distinctly influence the crystallinity characteristics and aggregation features, and TA treatment can effectively fine-tune the phase separation to form suitable donor-acceptor interpenetrating networks, which is beneficial for exciton dissociation and charge transportation, leading to highly efficient photovoltaic performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available