4.8 Article

Design of a Multifunctional Interlayer for NASCION-Based Solid-State Li Metal Batteries

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 22, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202001444

Keywords

high current density; interlayer; lithium metal anode; solid state batteries; thermal runaway

Ask authors/readers for more resources

NASCION-type Li conductors have great potential to bring high capacity solid-state batteries to realization, related to its properties such as high ionic conductivity, stability under ambient conditions, wide electrochemical stability window, and inexpensive production. However, their chemical and thermal instability toward metallic lithium (Li) has severely hindered attempts to utilize Li as anode material in NASCION-based battery systems. In this work, it is shown how a tailored multifunctional interlayer between the solid electrolyte and Li anode can successfully address the interfacial issues. This interlayer is designed by creating a quasi-solid-state paste in which the functionalities of LAGP (Li1.5Al0.5Ge1.5(PO4)(3)) nanoparticles and an ionic liquid (IL) electrolyte are combined. In a solid-sate cell, the LAGP-IL interlayer separates the Li metal from bulk LAGP and creates a chemically stable interface with low resistance (approximate to 5 omega cm(2)) and efficiently prevents thermal runaway at elevated temperatures (300 degrees C). Solid-state cells designed with the interlayer can be operated at high current densities, 1 mA cm(-2), and enable high rate capability with high safety. Here developed strategy provides a generic path to design interlayers for solid-state Li metal batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available