4.6 Article

Genome-wide ChIP-seq analysis of EZH2-mediated H3K27me3 target gene profile highlights differences between low- and high-grade astrocytic tumors

Journal

CARCINOGENESIS
Volume 38, Issue 2, Pages 152-161

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgw126

Keywords

-

Categories

Funding

  1. Indian Council of Medical Research (ICMR), India [5/13/118/2011-NCD-III]
  2. J C Bose fellowship of Department of Science and Technology, India
  3. Council of Scientific and Industrial Research (CSIR), India [09/006(0397)/2009-EMR-I]

Ask authors/readers for more resources

Enhancer of zeste homolog-2(EZH2) is a key epigenetic regulator that functions as oncogene and also known for inducing altered trimethylation of histone at lysine-27 (H3K27me3) mark in various tumors. However, H3K27me3 targets and their precise relationship with gene expression are largely unknown in astrocytic tumors. In this study, we checked EZH2 messenger RNA and protein expression in 90 astrocytic tumors of different grades using quantitative PCR and immunohistochemistry, respectively. Further, genome-wide ChIP-seq analysis for H3K27me3 modification was also performed on 11 glioblastomas (GBMs) and 2 diffuse astrocytoma (DA) samples. Our results showed EZH2 to be highly overexpressed in astrocytic tumors with a significant positive correlation with grade. Interestingly, ChIP-seq mapping revealed distinct differences in genes and pathways targeted by these H3K27me3 modifications between GBM versus DA. Neuroactive ligand receptor pathway was found most enriched in GBM (P = 9.4 x 10(-25)), whereas DA were found to be enriched in metabolic pathways. Also, GBM showed a higher enrichment of H3K27me3 targets reported in embryonic stem cells and glioma stem cells as compared with DAs. Our results show majority of these H3K27me3 target genes were downregulated, not only due to H3K27me3 modification but also due to concomitant DNA methylation. Further, H3K27me3 modification-associated gene silencing was not restricted to promoter but also present in gene body and transcription start site regions. To the best of our knowledge, this is the first high-resolution genome-wide mapping of H3K27me3 modification in adult astrocytic primary tissue samples of human, highlighting the differences between grades. Interestingly, we identified SLC25A23 as important target of H3K27me3 modification, which was downregulated in GBM and its low expression was associated with poor prognosis in GBMs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available