4.8 Article

Simple and Scalable Mechanochemical Synthesis of Noble Metal Catalysts with Single Atoms toward Highly Efficient Hydrogen Evolution

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 25, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202000531

Keywords

ball milling; hydrogen evolution; mechanochemical synthesis; noble metals; single-atom catalysts

Funding

  1. NRF (National Honor Scientist Program) [2010-0020414]
  2. KISTI [KSC-2019-CRE-0103]
  3. National Research Foundation of Korea [2010-0020414] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Designing a facile strategy to access active and atomically dispersed metallic catalysts are highly challenging for single atom catalysts (SACs). Herein, a simple and fast approach is demonstrated to construct Pt catalysts with single atoms in large quantity via ball milling Pt precursor and N-doped carbon support (K2PtCl4@NC-M; M denotes ball-milling). The as-prepared K2PtCl4@NC-M only requires a low overpotential of 11 mV and exhibits 17-fold enhanced mass activity for the electrochemical hydrogen evolution compared to commercial 20 wt% Pt/C. The superior hydrogen evolution reaction (HER) catalytic activity of K2PtCl4@NC-M can be attributed to the generation of Pt single atoms, which improves the utilization efficiency of Pt atoms and the introduction of Pt-N2C2 active sites with near-zero hydrogen adsorption energy. This viable ball milling method is found to be universally applicable to the fabrication of other single metal atoms, for example, rhodium and ruthenium (such as Mt-N2C2, where Mt denotes single metal atom). This strategy also provides a promising and practical avenue toward large-scale energy storage and conversion application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available