4.5 Article

Assessment of leaf ultrastructure offers insights into mechanisms regulating sugarcane performance under low-phosphorus stress

Journal

ACTA PHYSIOLOGIAE PLANTARUM
Volume 42, Issue 4, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11738-020-03052-w

Keywords

Bundle sheath; Cell wall; Chloroplast; Mesophyll; Nutritional stress; Saccharum spp

Categories

Funding

  1. SAo Paulo State Research Foundation (FAPESP-Brazil) [2016/14058-9]

Ask authors/readers for more resources

Detailed studies of plant responses to phosphorus (P) deficiency might reveal opportunities to improve sugarcane performance under nutrient stress, termed as P use efficiency. Then, we aimed through transmission electron microscopy to offer insights into the effects of varying P supply on leaf ultrastructural traits influencing photosynthesis and leaf area formation. Plants of the genotype RB86-7515 were cultivated under varying nutrient supply (0.0125, 0.05, 0.2 and 0.8 mM P) for 4 months. Diagnostic mature leaves were sampled to evaluate ultrastructural organization and P concentration. Leaf area and plant dry mass responded positively to increasing P rates and maximum values were attained at 0.55 mM P. Leaf P concentration increased as a function of nutrient supply, and the greatest area of diagnostic leaf and whole plant growth was associated with 1.80 g kg(-1) P. Under severe deficiency (relative growth <= 30% and leaf P <= 0.90 g kg(-1)) generated with 0.0125- and 0.05-mM P, transmission electron microscopy revealed pronounced damages to leaf ultrastructure. In mesophyll cells, the changes were more intense under the lowest P rate, and included disintegration of the middle lamella, collapse of plasma membrane and distortion of thylakoids. Bundle sheath chloroplasts of the severely P-deficient plants exhibited, compared with those under 0.2- and 0.8-mM P, disorganization of lamellar membrane system. Collectively, these ultrastructural alterations offer insights into how P deficiency affects whole plant photosynthetic capacity and provide possible target traits at canopy level related to sugarcane P use efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available