4.8 Review

The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling

Journal

CARBON
Volume 105, Issue -, Pages 52-76

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2016.04.008

Keywords

-

Funding

  1. Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office (VTO) [DE-AC05-00OR22725]

Ask authors/readers for more resources

An in-depth historical and current review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, composition, electrochemistry, and formation mechanism. During initial LIB operation, the SEI layer forms on the graphite surfaces, the most common anode material. The SEI is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, rate capability, and safety. While the presence of the anode SEI is vital, it is difficult to control its formation and growth, as they depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and temperature. Thus, SEI formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the LIB development. This article covers the progression of knowledge regarding the SEI, from its discovery in 1979 to the current state of understanding, and covers differences in the chemical and structural makeup when cell materials and components are varied. It also discusses the relationship of the SEI layer to the LIB formation step, involving both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available