4.8 Article

Charge carrier concentration and offset voltage in quasi-free-standing monolayer chemical vapor deposition graphene on SiC

Journal

CARBON
Volume 101, Issue -, Pages 431-438

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2016.01.093

Keywords

-

Funding

  1. European Union [604391]
  2. National Centre for Research and Development [GRAF-TECH/NCBiR/12/14/2013]
  3. National Science Centre [PRELUDIUM 2013/11/N/ST3/04147]

Ask authors/readers for more resources

Epitaxial Chemical Vapor Deposition growth of graphene on silicon carbide offers the maturity and reliability expected for large-scale fabrication of graphene-based devices. In particular, the ultimate challenge of graphene synthesis on SiC, i.e. quasi-free-standing monolayer graphene which comes through hydrogen atom intercalation of the sole buffer layer grown on the Si-face of SiC, offers high carrier mobility (as high as 6600 [cm(2)/Vs]) and electrical stability throughout the device processing cycle. In this report, we present extensive statistics of the electrical properties of QFS-monolayer graphene grown on 4H(0001) and 6H(0001) semi-insulating 10 mm x 10 mm substrates, being a result of 110 individual processes. The adopted explanation for the origin of the as-grown doping level in epitaxial graphene based on the spontaneous polarization of hexagonal SiC and its most up-to-date values is reaffirmed. We introduce the issue of the step-edge-induced offset voltage radial dependence and confront it with the morphological analysis of the average step edge height and terrace width, all related to the place of origin of a specific sample within a 4-inch SiC wafer. Finally, we conclude that within the step edge area QFS-monolayer graphene is statistically nearly half as resistive as the previously reported QFS-bilayer graphene. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available