4.8 Article

Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier

Journal

ACTA BIOMATERIALIA
Volume 110, Issue -, Pages 119-128

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2020.04.034

Keywords

Dynamic crosslinking; Thermosensitive hydrogel; Self-fixing hydrogel; Postoperative adhesion; Adhesion prevention

Funding

  1. National Natural Science Foundation of China [51820105004]
  2. Guangdong Innovative and Entrepreneurial Research Team Program [2013S086]
  3. Natural Science Foundation of Guangdong Province [2014A030312018]

Ask authors/readers for more resources

Tissue adhesion is a severe postoperative complication. Various strategies have been developed to minimize postoperative adhesion, but the clinical efficacy is still far from satisfactory. Herein, we present a dual dynamically crosslinked hydrogel to serve as a physical postoperative anti-adhesion barrier. The hydrogel was generated by dynamic chemical oxime bonding from alkoxyamine-terminated Pluronic F127 (AOP127) and oxidized hyaluronic acid (OHA), as well as hydrophobic association of AOP127. Rheological analysis demonstrated that the hydrogel exhibits temperature sensitivity. At 37 degrees C, it shows much higher modulus and higher stability than the Pluronic F127 hydrogel. Hemolytic assays suggested that the hydrogel undergoes low hemolysis. In addition, it exhibited anti-adhesion to blood cells in blood cell adhesion tests. It also showed an anti-attachment effect to fibroblasts and biocompatibility in vitro cell studies. Macroscopic evaluation and lap-shear tests revealed that the hydrogel has a moderate adhesive capacity to tissue, which is important for self-fixation. A rat model of sidewall defect-bowel abrasion was established to evaluate the anti-adhesion effect in vivo. The gross observation and pathological analysis revealed a significant reduction in postoperative peritoneal adhesion in the AOP127/OHA hydrogel-treated group than those treated with normal saline or Pluronic F127 hydrogel. Hence, the dual dynamically crosslinked hydrogel with self-fixable capacity may be suitable as a physical barrier for postoperative adhesion prevention. Statement of Significance Despite the development of numerous postoperative anti-adhesion barriers, their anti-adhesion efficacy is still limited in clinical trials due to poor tissue adhesion and rapid clearance from injured areas. Herein, we have developed a dual dynamic crosslinked hydrogel, generated by dynamic oxime bonds and hydrophobic interactions. The hydrogel is temperature-sensitive and demonstrates moderate tissue adhesion capacity, which allows for self-fixation when applied to defects. The introduction of dynamic covalent bonds improves the stability of the hydrogel. Moreover, the hydrogel not only displays appropriate hemocompatibility, cytocompatibility and anti-adhesion of blood cells and fibroblasts, but it also effectively contributes to preventing postoperative peritoneal adhesions in vivo. Hence, this dual dynamic crosslinked hydrogel may have potential applications as a physical barrier in clinical practice. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available