4.8 Article

Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding

Journal

ACS NANO
Volume 14, Issue 4, Pages 5008-5016

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c01312

Keywords

MXene; two-dimensional; electromagnetic interference shielding; conductivity; film

Funding

  1. National Research Foundation of Korea [2017R1A2B3006469, 2019M3D1A2014004]
  2. National Research Foundation of Korea [2017R1A2B3006469] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

New ultrathin and multifunctional electromagnetic interference (EMI) shielding materials are required for protecting electronics against electromagnetic pollution in the fifth-generation networks and Internet of Things era. Micrometer-thin Ti3C2Tx MXene films have shown the best EMI shielding performance among synthetic materials so far. Yet, the effects of elemental composition, layer structure, and transition-metal arrangement on EMI shielding properties of MXenes have not been explored, despite the fact that more than 30 different MXenes have been reported, and many more are possible. Here, we report on a systematic study of EMI shielding properties of 16 different MXenes, which cover singlemetal MXenes, ordered double-metal carbide MXenes, and random solid solution MXenes of M and X elements. This is the largest set of MXene compositions ever reported in a comparative study. Films with thicknesses ranging from nanometers to micrometers were produced by spin-casting, spraycoating, and vacuum-assisted filtration. All MXenes achieved effective EMI shielding (>20 dB) in micrometer-thick films The EMI shielding effectiveness of sprayed Ti3C2Tx film with a thickness of only , similar to 40 nm reaches 21 dB. Adjustable EMI shielding properties were achieved in solid solution MXenes with different ratios of elements. A transfer matrix model was shown to fit EMI shielding data for highly conductive MXenes but could not describe the behavior of materials with low conductivity. This work shows that many members of the large MXene family can be used for EMI shielding, contributing to designing ultrathin, flexible, and multifunctional EMI shielding films benefiting from specific characteristics of individual MXenes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available