4.8 Article

Hierarchical Co3O4@N-Doped Carbon Composite as an Advanced Anode Material for Ultrastable Potassium Storage

Journal

ACS NANO
Volume 14, Issue 4, Pages 5027-5035

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c01395

Keywords

cobalt oxide; advanced anode; potassium-ion battery; density fiinctional theory; nitrogen-doped carbon

Funding

  1. Australian Research Council (ARC) [DP160102627, DP1701048343]
  2. China Research Fund for Foreign Talents on Major Science and Technology Projects [ZD20180029]
  3. Australian Research Council through the LIEF program

Ask authors/readers for more resources

Cobalt oxide (Co3O4) delivers a poor capacity when applied in large-sized alkali metal-ion systems such as potassium-ion batteries (KIBs). Our density functional theory calculation suggests that this is due to poor conductivity, high diffusion barrier, and weak potassium interaction. N-doped carbon can effectively attract potassium ions, improve conductivity, and reduce diffusion barriers. Through interface engineering, the properties of Co3O4 can be tuned via composite design. Herein, a Co3O4@gN-doped carbon composite was designed as an advanced anode for KIBs. Due to the interfacial design of the composite, K+ were effectively transported through the Co3O4@N-C composite via multiple ionic pathways. The structural design of the composite facilitated increased Co3O4 spacing, a nitrogen-doped carbon layer reduced K-ion diffusion barrier, and improved conductivity and protected the electrode from damage. Based on the entire composite, a superior capacity of 448.7 mAh/g was delivered at 50 mA/g after 40 cycles, and moreover, 213 mAh/g was retained after 740 cycles when cycled at 500 mA/g. This performance exceeds that of most metal-oxide-based MB anodes reported in literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available