4.6 Article

GLUT-1: An Effective Target To Deliver Brain-Derived Neurotrophic Factor Gene Across the Blood Brain Barrier

Journal

ACS CHEMICAL NEUROSCIENCE
Volume 11, Issue 11, Pages 1620-1633

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acschemneuro.0c00076

Keywords

Alzheimer's disease; liposomes; gene delivery; blood brain barrier; glucose transporter; brain-derived neurotrophic factor

Funding

  1. National Institutes of Health [R01AG051574]

Ask authors/readers for more resources

Alzheimer's disease (AD), the most common cause of dementia, inflicts enormous suffering to patients and their family members. It is the third deadliest disease, affecting 46.8 million people worldwide. Brain-derived neurotrophic factor (BDNF) is involved in the development, maintenance, and plasticity of the central nervous system. This crucial protein is significantly reduced in AD patients leading to reduced plasticity and neuronal death. In this study, we demonstrate the targeted delivery of the BDNF gene to the brain using liposome nanoparticles. These liposomes were surface modified with glucose transporter-1 targeting ligand (mannose) and cell penetrating peptides (penetratin or rabies virus glycoprotein) to promote selective and enhanced delivery to the brain. Surface modified liposomes showed significantly higher transfection of BDNF in primary astrocytes and neurons, compared to unmodified (plain) liposomes. BDNF transfection via dual modified liposomes resulted in an increase in presynaptic marker synaptophysin protein in primary neuronal cells, which is usually found to be reduced in AD patients. Liposomes surface modified with mannose and cell penetrating peptides demonstrated similar to 50% higher transport across the in vitro blood brain barrier (BBB) model and showed significantly higher transfection efficiency in primary neuronal cells compared to plain liposomes. These results were correlated with significantly higher transport of surface modified liposomes (similar to 7% of injected dose/gram of tissue) and BDNF transfection (similar to 1.7 times higher than baseline level) across BBB following single intravenous administration in C57BL/6 mice without any signs of inflammation or toxicity. Overall, this study suggests a safe and targeted strategy to increase BDNF protein in the brain, which has the potential to reverse AD pathophysiology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available