4.8 Article

Electrocatalytic oxygen reduction on nitrogen-doped carbon nanoparticles derived from cyano-aromatic molecules via a solution plasma approach

Journal

CARBON
Volume 98, Issue -, Pages 411-420

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2015.11.013

Keywords

-

Funding

  1. NU-PPC Plasma Chemical Technology Laboratory

Ask authors/readers for more resources

Metal-free nitrogen-doped carbon nanoparticles (NCNPs) have been synthesized via a solution plasma process with the potential to achieve uniformly distributed nitrogen atoms. A set of cyano-aromatic molecules, including benzonitrile, 2-cyanopyridine, and cyanopyrazine, were used as a single-source precursor in the synthesis without the addition of a metal catalyst source. The resultant NCNPs reveal uniformly nanosized particles (20-40 nm) and an interconnected hierarchical pore structure with a high specific surface area (210-250 m(2) g(-1)). The difference in carbon/nitrogen mole ratios of organic precursors gives rise to the variation of nitrogen-doping level in NCNPs from 0.63 to 1.94 atom %. Detailed electrochemical evaluation toward the oxygen reduction reaction (ORR) demonstrates that NCNPs exhibit a significant improvement in terms of both onset potential and current density under alkaline and acidic conditions. The predominant distribution of graphitic-N and pyridinic-N sites on NCNPs plays an essential role in enhancing the ORR activity and the selectivity toward a four-electron reduction pathway. More importantly, NCNPs possess excellent robust long-term durability and strong methanol tolerance compared with those of a commercial Pt/carbon catalyst. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available