4.8 Article

Realization of an Ultrasensitive and Highly Selective OFET NO2 Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin-MOF

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 16, Pages 18748-18760

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c00803

Keywords

organic field-effect transistor; conjugated polymer; metal-organic framework; NO2 sensor; heterojunction

Funding

  1. King Abdullah University of Science and Technology (KAUST), Saudi Arabia

Ask authors/readers for more resources

Organic field-effect transistors (OFETs) are emerging as competitive candidates for gas sensing applications due to the ease of their fabrication process combined with the ability to readily fine-tune the properties of organic semiconductors. Nevertheless, some key challenges remain to be addressed, such as material degradation, low sensitivity, and poor selectivity toward toxic gases. Appropriately, a heterojunction combination of different sensing layers with multifunctional capabilities offers great potential to overcome these problems. Here, a novel and highly sensitive receptor layer is proposed encompassing a porous 3D metal-organic framework (MOF) based on isostructural-fluorinated MOFs acting as an NO2 specific preconcentrator, on the surface of a stable and ultrathin PDVT-10 organic semiconductor on an OFET platform. Here, with this proposed combination we have unveiled an unprecedented 700% increase in sensitivity toward NO2 analyte in contrast to the pristine PDVT-10. The resultant combination for this OFET device exhibits a remarkable lowest detection limit of 8.25 ppb, a sensitivity of 680 nA/ppb, and good stability over a period of 6 months under normal laboratory conditions. Further, a negligible response (4.232 nA/%RH) toward humidity in the range of 5%-90% relative humidity was demonstrated using this combination. Markedly, the obtained results support the use of the proposed novel strategy to achieve an excellent sensing performance with an OFET platform.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available