4.8 Article

Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites

Journal

CARBON
Volume 96, Issue -, Pages 1084-1092

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2015.10.058

Keywords

-

Funding

  1. European Research Council-Consolidator [615132]

Ask authors/readers for more resources

The J-integral is recognized as a fundamental parameter in fracture mechanics that characterizes the inherent resistance of materials to crack growth. However, the conventional methods to calculate the J-integral, which require knowledge of the exact position of a crack tip and the continuum fields around it, are unable to precisely measure the J-integral of polymer composites at the nanoscale. This work aims to propose an effective calculation method based on coarse-grained (CG) simulations for predicting the J-integral of carbon nanotube (CNT)/polymer composites. In the proposed approach, the J-integral is determined from the load displacement curve of a single specimen. The distinguishing feature of the method is the calculation of J-integral without need of information about the crack tip, which makes it applicable to complex polymer systems. The effects of the CNT weight fraction and covalent cross-links between the polymer matrix and nanotubes, and polymer chains on the fracture behavior of the composites are studied in detail. The dependence of the J-integral on the crack length and the size of representative volume element (RVE) is also explored. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available