4.8 Article

Ultrathin 1T-MoS2 Nanoplates Induced by Quaternary Ammonium-Type Ionic Liquids on Polypyrrole/Graphene Oxide Nanosheets and Its Irreversible Crystal Phase Transition During Electrocatalytic Nitrogen Reduction

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 22, Pages 25189-25199

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c05204

Keywords

n-butyl triethyl ammonium bromide (BTAB); polypyrrole/graphene oxide (PPy/GO); 1T-MoS2; nitrogen reduction reaction (NRR); irreversible crystal phase transition

Funding

  1. Science and Technology Innovative Talents Support Program of Shenyang [RC180166]
  2. Scientific Research Fund of Liaoning Provincial Education Department [LNQ201903]
  3. National Natural Science Foundation of China [51203072, 51773085]

Ask authors/readers for more resources

Ultrathin nanoplates of metastable 1T-MoS2 have been successfully stabilized and uniformly distributed on the surface of n-butyl triethyl ammonium bromide functionalized polypyrrole/graphene oxide (BTAB/PPy/GO) by a very simple hydrothermal method. BTAB as a typical kind of quaternary ammonium-type ionic liquids (ILs) played a crucial role in the formation of the obtained 1T-MoS2/BTAB/PPy/GO. It was covalently linked with PPy/GO and arranged in a highly ordered order at the solid-liquid interface of PPy/GO and H2O due to Coulombic interactions and other intermolecular interactions, which would induce and stabilize ultrathin 1T-MoS2 nanoplates by morphosynthesis. The good electrocatalytic activity toward nitrogen reduction reaction (NRR) with strong durability and good stability can be achieved by 1T-MoS2/BTAB/PPy/GO due to their excellent inorganic/organic hierarchical lamellar micro-/nanostructures. Especially, after the long-term electrocatalysis for NRR at a negative potential, metastable 1T-MoS2 as the catalytic center undergoes two types of irreversible crystal phase transition, which was converted to 1T-MoS2 and Mo2N, caused by the competitive hydrogen evolution reaction (HER) process and the electrochemical reaction between the electroactive 1T-MoS2 and N-2, respectively. The new N-Mo bonding prevents Mo atoms from binding to other N atoms in N-2, resulting in the deactivation of the electrocatalysts to NRR after being used for 18 h. Even so, quaternary ammonium-type ILs would induce the crystal structures of transition-metal dichalcogenides (TMDCs), which might provide a new thought for the reasonable design of electrocatalysts based on TMDCs for electrocatalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available