4.8 Review

Liquid-Liquid Phase Separation in Supermicrometer and Submicrometer Aerosol Particles

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 53, Issue 6, Pages 1102-1110

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.0c00093

Keywords

-

Funding

  1. Pennsylvania State University
  2. NSF CAREER award [CHE-1351383]
  3. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DE-SC0018032]
  4. U.S. Department of Energy (DOE) [DE-SC0018032] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

The interactions of aerosol particles with light and clouds are among the most uncertain aspects of anthropogenic climate forcings. The effects of aerosol partides on climate depend on their optical properties, heterogeneous chemistry, water uptake behavior, and ice nucleation activity. These properties in turn depend on aerosol physics and chemistry including composition, size, shape, internal structure ( morphology), and phase state. The greatest numbers of particles are found at small, submicrometer sizes, and the properties of aerosol particles can differ on the nanoscale compared with measurements of bulk materials. As a result, our focus has been on characterizing the phase transitions of aerosol partides in both supermicrometer and submicrometer particles. The phase transition of particular interest for us has been liquid-liquid phase separation (LLPS), which occurs when components of a solution phase separate due to a difference in solubilities. For example, organic compounds can have limited solubility in salt solutions especially as the water content decreases, increasing the concentration of the salt solution, and causing phase separation between organic-rich and inorganic-rich phases. To characterize the systems of interest, we primarily use optical microscopy for supennicrometer particles and cryogenic-transmission microscopy for submicrometer particles. This Account details our main results to date for the phase transitions of supermicrometer partides and the morphology of submicrometer aerosol. We have found that the relative humidity (RH) at which LLPS occurs (separation RH; SRH) is highly sensitive to the composition of the particles. For supennicrometer particles, SRH decreases as the pH is lowered to atmospherically relevant values. SRH also decreases when non-phase-separating organic compounds are added to the particles. For submicrometer particles, a size dependence of morphology is observed in systems that undergo LLPS in supermicrometer particles. In the limit of slow drying rates, particles <30 nm are homogeneous and larger particles are phase-separated. This size dependence of aerosol morphology arises because small partides cannot overcome the activation barrier needed to form a new phase when phase separation occurs by a nucleation and growth mechanism. The inhibition of LLPS in small particles is observed for mixtures of ammonium sulfate with single organic compounds as well as complex organics like alpha-pinene secondary organic matter. The morphology of particles affects activation diameters for the formation of cloud condensation nuclei. These results more generally have implications for aerosol properties that affect the climate system. In addition, LLPS is also widely studied in materials and biological chemistry, and our results could potentially translate to implications for these fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available