4.4 Article

Proniosomal Microcarriers: Impact of Constituents on the Physicochemical Properties of Proniosomes as a New Approach to Enhance Inhalation Efficiency of Dry Powder Inhalers

Journal

AAPS PHARMSCITECH
Volume 21, Issue 5, Pages -

Publisher

SPRINGER
DOI: 10.1208/s12249-020-01705-0

Keywords

lung; dry powder inhaler; proniosomes; aerodynamic; cytotoxicity

Ask authors/readers for more resources

Proniosomes are free-flowing systems with coating carriers, which developed as a method for improving the drug flow and pulmonary delivery. Extensive research on proniosomes was done to enhance the dry powder inhalers (DPI)'s inhalation performance. This research aimed at studying the impact of lactose-mannitol mixture additives on the proniosome's physicochemical properties as a method for improving the inhalation efficiency of DPI. Vismodegib has been employed as a compound model. Box-Behnken design has been employed to prepare different proniosomes formulae by incorporating various (A) span 60 concentrations, (B) lactose concentrations and (C) mannitol: total carrier mixture. The measured responses were vesicle size (R-1), %release (R-2), Carr's index (R-3) and %recovery (R-4). The results displayed that R-1 and R-4 were significantly antagonistic to C and significantly synergistic to both A and B while R-2 and R-3 were significantly synergistic to C and significantly antagonistic to both A and B. The optimal formula was selected for its aerodynamic behaviour, cytotoxic activity and bioavailability assessment. The optimal formula resulted in better Vismodegib lung deposition, cytotoxic activity and relative bioavailability. This novel formula could be a promising carrier for sustained delivery of drugs via the pulmonary route.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available