4.8 Article

Interpretation of X-ray photoelectron spectra of carbon-nitride thin films: New insights from in situ XPS

Journal

CARBON
Volume 108, Issue -, Pages 242-252

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2016.07.017

Keywords

-

Funding

  1. Swedish Research Council (VR) Linnaeus Environment LiLi-NFM on Nanoscale Functional Materials
  2. Carl Tryggers Foundation for Scientific Research [CTS 14:431]

Ask authors/readers for more resources

We report on angular-resolved x-ray photoelectron spectroscopy (XPS) studies of magnetron sputtered CNx thin films, first in situ (without air exposure), then after air exposure (for time periods ranging from minutes to several years), and finally after Ar ion etching using ion energies ranging from 500 eV to 4 keV. The as-deposited films typically exhibit two strong N1s peaks corresponding to pyridine-like, and graphite-like, at similar to 398.2 eV and similar to 400.7 eV, respectively. Comparison between in situ and air-exposed samples suggests that the peak component at similar to 402-403 eV is due only to quaternary nitrogen and not oxidized nitrogen. Furthermore, peak components in the similar to 399-400 eV range cannot only be ascribed to nitriles or pyrrolic nitrogen as is commonly done. We propose that it can also be due to a polarization shift in pyridinic N, induced by surface water or hydroxides. Argon ion etching readily removes surface oxygen, but results also in a strong preferential sputtering of nitrogen and can cause amorphization of the film surface. The best methods for evaluating and interpreting the CNx film structure and composition with ex-situ XPS are discussed. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available