4.6 Article

Solvent-Free One-Shot Synthesis of Thermoplastic Polyurethane Based on Bio-Poly(1,3-propylene succinate) Glycol with Temperature-Sensitive Shape Memory Behavior

Journal

ACS OMEGA
Volume 5, Issue 8, Pages 4058-4066

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b03663

Keywords

-

Funding

  1. MOST (Ministry of Science and Technology) of the Republic of China, Taiwan [MOST 108-3017-F-027-001]

Ask authors/readers for more resources

In this work, a new family of fully biobased thermoplastic polyurethanes (TPUs) with thermo-induced shape memory is developed. First, a series of TPUs were successfully synthesized by the one-shot solvent-free bulk polymerization of bio-poly(1,3-propylene succinate) glycol (PPS) with various molecular weights (M-n = 1000, 2000, 3000, and 4000), 1,4-butanediol (BDO), and 4,4'-methylene diphenyl diisocyanate (MDI). These polyurethanes (PUs) are denoted as PPS-x-TPUs (x = 1000, 2000, 3000, and 4000), where x represents the M-n of PPS in the polymers. To determine the effect of the molecular weight of the soft segment of PU, all PPS-TPUs were formed with the same hard segment content (32.5 wt %). The soft segment with high molecular weight in PPS-4000-TPU caused a high degree of soft segment entanglement and formed many secondary bonds. PPS-4000-TPU exhibited better mechanical (tensile strength: 64.13 MPa and hardness: 90A) and thermomechanical properties (maximum loading: 2.95 MPa and maximum strain: 144%) than PPS-1000-TPU. At an appropriate shape memory programming temperature, all synthesized PPS-x-TPUs exhibited excellent shape memory behaviors with a fixed shape rate of >99% and a shape recovery rate of >86% in the first round and 95% in the following rounds. Therefore, these bio-TPUs with shape memory have potential for use in smart fabrics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available