4.7 Article

Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold

Journal

CARBOHYDRATE POLYMERS
Volume 147, Issue -, Pages 89-96

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2016.03.048

Keywords

Aerogels; Cellulose; Silica; Compression properties; Insulation

Funding

  1. Special Fund for Forest Scientific Research in the Public Welfare [201504603]
  2. UTIA Innovation Grant

Ask authors/readers for more resources

Monolithic cellulose nanofibrils (CNF)-silica composite aerogels were successfully prepared by immersing CNF aerogels into a silica solution in a two-step sol-gel process (initial hydrolysis of tetraethyl orthosilicate (TEOS) followed by condensation of silica particles). Aerogels were characterized by SEM, BET surface area test, bulk density and silica content analysis, FTIR spectroscopy, and compression test. The form of SiO2 existing in the composite aerogel was the spherical individual particles coated on CNF fibrils. The pH value of condensation solution was found to have great influence on the properties of the composite aerogels. By varying the pH value of condensation atmosphere from 8 to 12, the bulk densities of composite aerogels were able to be linearly increased from 0.059 g cm(-3) to 0.29 g cm(-3), and the silica content in the matrix sharply jumped from 3 wt% to 79 wt%. The porosities of the aerogels remained very high, between 85 and 96%, and the surface area of the composite aerogel reached up to 700.1 m(2) g(-1). The compression properties of the composite aerogel improved greatly compared with those of the silica aerogel, about 8-30 times higher. Moreover, the compressive strength of the composite aerogel prepared in this work greatly exceeded the conventional insulation materials found in the recent commercial market, and without substantial increases in thermal conductivity. Hence, the findings of this research offer a promising application for composite aerogels and give a theoretical basis for developing new advanced materials. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available