4.7 Article

Mechanical and structural property analysis of bacterial cellulose composites

Journal

CARBOHYDRATE POLYMERS
Volume 144, Issue -, Pages 447-453

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2016.02.055

Keywords

Bacterial cellulose; Food additives; Polysaccharide composites; Water binding; Mechanical properties

Ask authors/readers for more resources

Bacterial cellulose (BC) exhibits unique properties including high mechanical strength and high crystallinity. Improvement in the mechanical properties of BC is sought for many applications ranging from food to structural composites to biomedical materials. In this study, different additives including carboxymethyl cellulose (CMC), pectin, gelatin, cornstarch, and corn steep liquor were included in the fermentation media to alter the BC produced. Three different concentrations (1%, 3% and 5%) were chosen for each of the additives, with no additive (0%) as the control. The produced BC was then analyzed to determine tensile and compression modulus. Amongst the tested additives, BC produced in media containing 3% (w/v) pectin had the maximum compressive modulus (142 kPa), and BC produced in media containing 1% (w/v) gelatin exhibited the maximum tensile modulus (21 MPa). Structural characteristics of BC and BC-additive composites were compared using X-Ray diffraction (XRD). The crystal size and crystallinity of BC was reduced when grown in the presence of CMC and gelatin while pectin only decreased the crystallite size. This suggested that CMC and gelatin may be incorporated into the BC fibril structure. The field emission scanning electron microscopy (FESEM) images showed the increased micro-fibril aggregation in BC pellicles grown in the presence of additives to the culture media. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available