4.4 Article

MiR-301a promotes embryonic stem cell differentiation to cardiomyocytes

Journal

WORLD JOURNAL OF STEM CELLS
Volume 11, Issue 12, Pages 1130-1141

Publisher

BAISHIDENG PUBLISHING GROUP INC
DOI: 10.4252/wjsc.v11.i12.1130

Keywords

miR-301a; Mouse embryonic stem cells; Differentiation; Cardiomyocytes

Funding

  1. National Natural Science Foundation of China [81800243]
  2. Science and Technology Commission of Shanghai Municipality [18411965900]
  3. Fundamental Research Funds for the Central Universities [22120180125]

Ask authors/readers for more resources

BACKGROUND Cardiovascular disease is the leading cause of death worldwide. Tissue repair after pathological injury in the heart remains a major challenge due to the limited regenerative ability of cardiomyocytes in adults. Stem cell-derived cardiomyocytes provide a promising source for the cell transplantation-based treatment of injured hearts. AIM To explore the function and mechanisms of miR-301a in regulating cardiomyocyte differentiation of mouse embryonic stem (mES) cells, and provide experimental evidence for applying miR-301a to the cardiomyocyte differentiation induction from stem cells. METHODS mES cells with or without overexpression of miR-301a were applied for all functional assays. The hanging drop technique was applied to form embryoid bodies from mES cells. Cardiac markers including GATA-4, TBX5, MEF2C, and alpha-actinin were used to determine cardiomyocyte differentiation from mES cells. RESULTS High expression of miR-301a was detected in the heart from late embryonic to neonatal mice. Overexpression of miR-301a in mES cells significantly induced the expression of cardiac transcription factors, thereby promoting cardiomyocyte differentiation and beating cardiomyocyte clone formation. PTEN is a target gene of miR-301a in cardiomyocytes. PTEN-regulated PI3K-AKT-mTOR-Stat3 signaling showed involvement in regulating miR-301a-promoted cardiomyocyte differentiation from mES cells. CONCLUSION MiR-301a is capable of promoting embryonic stem cell differentiation to cardiomyocytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available