4.8 Review

Designing solid-state electrolytes for safe, energy-dense batteries

Journal

NATURE REVIEWS MATERIALS
Volume 5, Issue 3, Pages 229-252

Publisher

NATURE RESEARCH
DOI: 10.1038/s41578-019-0165-5

Keywords

-

Funding

  1. US Department of Energy Basic Energy Sciences program [DE-SC0016082]
  2. US National Science Foundation Division of Materials Research [DMR-1609125]
  3. Beijing Institute of Collaborative Innovation through the Cornell Joint Energy Materials and Systems Laboratory

Ask authors/readers for more resources

Solid-state electrolytes (SSEs) have emerged as high-priority materials for safe, energy-dense and reversible storage of electrochemical energy in batteries. In this Review, we assess recent progress in the design, synthesis and analysis of SSEs, and identify key failure modes, performance limitations and design concepts for creating SSEs to meet requirements for practical applications. We provide an overview of the development and characteristics of SSEs, followed by analysis of ion transport in the bulk and at interfaces based on different single-valent (Li+, Na+, K+) and multivalent (Mg2+, Zn2+, Ca2+, Al3+) cation carriers of contemporary interest. We analyse the progress in overcoming issues associated with the poor ionic conductivity and high interfacial resistance of inorganic SSEs and the poor oxidative stability and cation transference numbers of polymer SSEs. Perspectives are provided on the design requirements for future generations of SSEs, with a focus on the chemical, geometric, mechanical, electrochemical and interfacial transport features required to accelerate progress towards practical solid-state batteries in which metals are paired with energetic cathode chemistries, including Ni-rich and Li-rich intercalating materials, sustainable organic materials, S-8, O-2 and CO2. Solid-state batteries based on electrolytes with low or zero vapour pressure provide a promising path towards safe, energy-dense storage of electrical energy. In this Review, we consider the requirements and design rules for solid-state electrolytes based on inorganics, organic polymers and organic-inorganic hybrids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available