4.6 Article

Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-Processable Li Argyrodites for All-Solid-State Li-Ion Batteries

Journal

ACS ENERGY LETTERS
Volume 5, Issue 3, Pages 718-727

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.0c00251

Keywords

-

Funding

  1. Technology Development Program to Solve Climate Changes
  2. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT AMP
  3. Future Planning [NRF2017M1A2A2044501, 2018R1A2A1A05019733, NRF-2018R1A2B6004996]
  4. National Research Foundation of Korea [미래선도형특성화연구] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Sheet-type solid electrolyte (SE) membranes are essential for practical all-solid-state Li batteries (ASLBs). To date, SE membrane development has mostly been based on polymer electrolytes with or without the aid of liquid electrolytes, which offset thermal stability (or safety). In this study, a new scalable fabrication protocol for thin (40-70 mu m) and flexible single-ion conducting sulfide SE membranes with high conductance (29 mS) and excellent thermal stability (up to similar to 400 degrees C) is reported. Electrospun polyimide (PI) nonwovens provide a favorable porous structure and ultrahigh thermal stability, thus accommodating highly conductive infiltrating solution-processable Li6PS5Cl0.5Br0.5 (2.0 mS cm(-1)). LiNi0.6Co0.2Mn0.2O2/graphite ASLBs using 40 mu m thick Li6PS5Cl0.5Br0.5-infiltrated PI membranes show promising performances at 30 degrees C (146 mA h g(-1)) and excellent thermal stability (marginal degradation at 180 degrees C). Moreover, a new proof-of-concept fabrication protocol for ASLBs at scale that involves the injection of liquefied SEs into the electrode/PI/electrode assemblies is successfully demonstrated for LiCoO2/PI-Li6PS5Cl0.5Br0.5/Li4Ti5O12 ASLBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available