4.5 Article

Research on the failure process and stability control technology in a deep roadway: Numerical simulation and field test

Journal

ENERGY SCIENCE & ENGINEERING
Volume 8, Issue 7, Pages 2297-2310

Publisher

WILEY
DOI: 10.1002/ese3.664

Keywords

cracking evolution; numerical simulation; roadway deformation; support technology; underground excavation

Categories

Funding

  1. Shandong Provincial Natural Science Found [ZR2019MEE022, ZR2018QEE001]
  2. National Natural Science Foundation of China [51904164]

Ask authors/readers for more resources

With the increase in mining depth and the deterioration of surrounding rock conditions, large deformation failure of deep roadway surrounding rock is still very common. To solve the support problem, it is necessary to understand the deformation and failure mechanism of the deep roadway. This paper presents a case study on the deformation failure behavior and support design of a deep roadway in the Tangyang mine by field tests and numerical simulations. The rock mass properties were first evaluated based on field data and the mechanical parameters of rock specimens. Then, the numerical model of the deep roadway surrounding rock was established based on the calibrated microparameters. The deformation features and cracking behavior of the roadway were investigated in detail. The results show that the cracking process of crack initiation, crack propagation, and rock separation in the surrounding rock of this kind of roadway is a gradual process developing from a shallow to deep depth. A combined support bolt-cable-mesh-steel ladder was proposed based on the failure characteristics of the roadway. Finally, a numerical simulation and field experiment were conducted to evaluate the rationality of the proposed support scheme, and the results show that the new support method can effectively control the surrounding rock. This study can provide valuable references for support design in deep underground engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available